
Modelling city specific situations

O. Väkevä, A. Kousa (Helsinki City/HSY)

> E. Pisoni (Jrc)

The challenge

Source: EEA

The 90.4 percentile of the $\rm PM_{10}$ daily concentrations, representing the 36th highest value. It is related to $\rm PM_{10}$ daily limit, allowing 35 exceedances of 50 $\mu g/m^3$ threshold.

An health perspective

Premature deaths attributable to fine particulate matter $(PM_{2.5})$, ozone (O_3) and nitrogen dioxide (NO₂) exposure in 2012 in 40 European countries and the EU 28

	PM 2.5	O 3	NO 2
Europe	432 000	17 000	75 000
EU-28	403 000	16 000	72 000

Netherlands

Italy

Poland

Romania

70,000

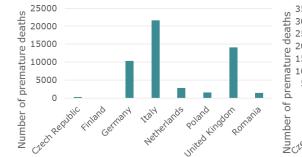
50,000

40,000

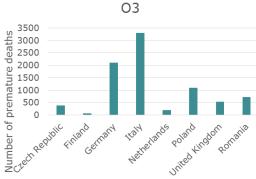
30,000

20,000

10,000 0


Clech Republic

Finland Germany


deaths 60,000

premai

Number of

NO2

United Kingdom Source: http://www.eea.europa.eu/publications/air-quality-in-europe-2015

Outline of the work

Bottom-up approach Questionnaire and "Catalogue of measures"

 Top-down approach SHERPA model (http://aqm.jrc.ec.europa.eu/sherpa.aspx)

How the cities defined key measures

- On the basis of emission inventories (national, regional, local)
- On the basis of modelling: all cities used different models, from national, regional and city level to local street canyon models
- Through projections of future emissions without measures (BAU) and with the planned measures taking place
- Linking with other plans, such as SUMP (Sustainable Urban Mobility Plan) and SEAP (Sustainable Energy Action Plan)

Barriers and positive issues

Barriers

- Governance: air quality planning is not always the responsibility of the city (but cities in charge of SUMP, SEAP, ...)
- Uncertainty of emission factors for traffic emissions (esp. diesel) and residential biomass burning
- Legislation does not everywhere allow for a city to collect congestion charges, and use the revenue to finance local investments

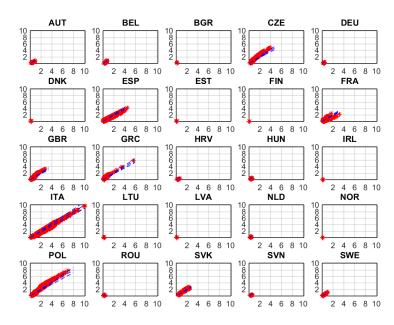
Positive issue:

- Cooperation between national, regional and local government
- Synergies between AQ effects and climate as well as noise
- Use of modelling to test effect of measures

Outline of the work

- Bottom-up approach Questionnaire and "Catalogue of measures"
- Top-down approach SHERPA model (http://aqm.jrc.ec.europa.eu/sherpa.aspx)

SHERPA assumptions


Main assumptions/limitations of SHERPA:

- It simulates urban background...you cannot use it for pollution in street canyons
- It uses 2009 meteorology, and top-down emission inventory
- It is based on a unique full air quality model CHIMERE
- It uses a spatial resolution of 7x7 km2 over the whole Europe

- SHERPA geographical domain:
 - Currently, for computational limitation, does not cover all Northern EU
 - A full domain coverage will be available Mid 2017

SHERPA validation URBAN AGENDA FOR THE EU

Volume 74, December 2015, Pages 66-74

Environmental Modelling & Software

A new approach to design source-receptor relationships for air quality modelling

A. Clappier^a, E. Pisoni^{b,} 📥 🖼, P. Thunis^b

^a Université de Strasbourg, Laboratoire Image Ville Environnement, 3, rue de l'Argonne, 67000 Strasbourg, France

^b European Commission, JRC, Institute for Environment and Sustainability, Air and Climate Unit, Via E. Fermi 2749, 21027 Ispra, VA, Italy

Research article

The SHERPA approach

^b TerrAria srl. Via M. Gioia 132 20125 Milan. Italy

P. Thunis^{a, 1}, B. Degraeuwe^a, E. Pisoni^a, F. Ferrari^b, A. Clappier^c

⁸ European Commission, Directorate for Energy, Transport and Climate, Ispra, Italy

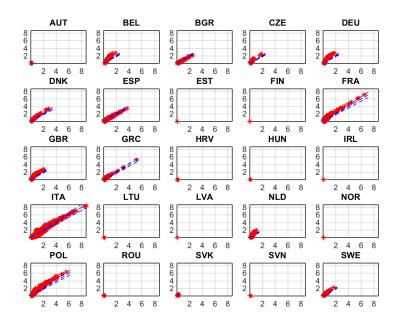
^c Université de Strasbourg, Laboratoire Image Ville Environnement, Strasbourg, France

Journal of Environmental Management

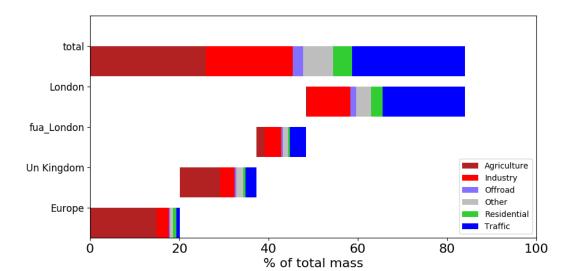
Volume 183, Part 3, 1 December 2016, Pages 952-958

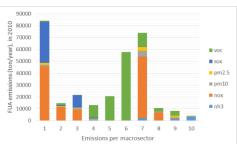
On the design and assessment of regional air quality plans:

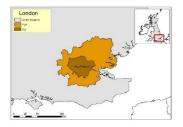
Environmental Modelling & Software

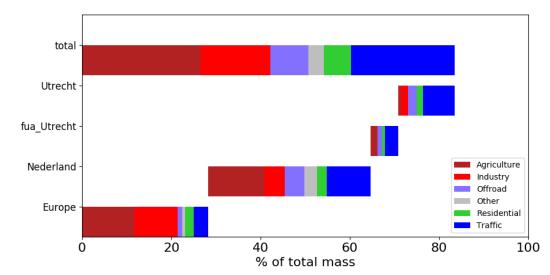

Volume 90, April 2017, Pages 68-77

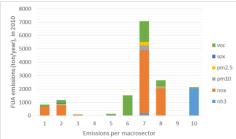
Adding spatial flexibility to source-receptor relationships for air quality modeling


E. Pisoni^{a,} . M. A. Clappier^b, B. Degraeuwe^a, P. Thunis^a

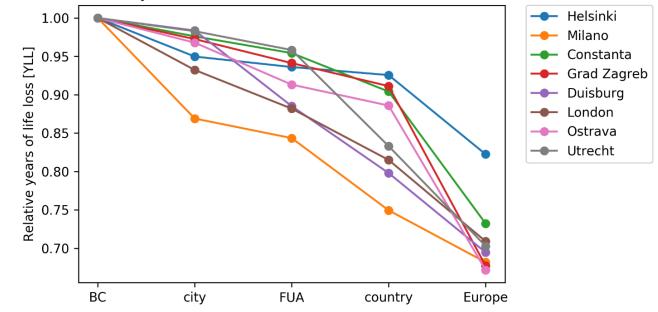

^a European Commission, Joint Research Centre (JRC), Directorate for Energy, Transport and Climate, Air and Climate Unit, Via E. Fermi 2749, I-21027, Ispra, VA, Italy ^b Université de Strasbourg, Laboratoire Image Ville Environnement, 3, rue de l'Argonne, 67000, Strasbourg, France






Agriculture:	ms 10
Industry:	ms 3-4
Other:	ms 5-6-9
PublicPower:	ms 1
Residential:	ms 2
Traffic:	ms 7-8

Utrecht case



An health perspective

Relative years of life loss in the FUA with 30% reductions

Conclusions

- WP1 contributed to better understanding of the current air quality situation (PM and NO2), from geographical and sectoral point of view
- Focus on PM2.5: health impact is still an issue
- For the analysis, there is room for improvement, i.e. with more accurate input data
- One option to be explored: integrating the two information (TP-BU), so that the top-down approach can be applied to more cities in a robust way

Contacts: <u>UA.AirQuality@ecorys.com</u> Questions ?